(C; C')-Controlled g-Fusion Frames in Hilbert Spaces
نویسندگان
چکیده
منابع مشابه
The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کامل$G$-dual Frames in Hilbert $C^{*}$-module Spaces
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
متن کاملApproximate Duals of $g$-frames and Fusion Frames in Hilbert $C^ast-$modules
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
متن کاملFUSION FRAMES IN HILBERT SPACES
Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iranian Journal of Mathematical Sciences and Informatics
سال: 2023
ISSN: ['1735-4463', '2008-9473']
DOI: https://doi.org/10.52547/ijmsi.18.1.179